Featured Websites

BioMAJ: a flexible framework for databanks synchronization and processing.

October 5, 2014 |

Large- and medium-scale computational molecular biology projects require accurate bioinformatics software and numerous heterogeneous biological databanks, which are distributed around the world. BioMAJ provides a flexible, robust, fully automated environment for managing such massive amounts of data...

MASS: meta-analysis of score statistics for sequencing studies.

October 5, 2014 |

Analysis of population structures and genome local ancestry has become increasingly important in population and disease genetics. With the advance of next generation sequencing technologies, complete genetic variants in individuals genomes are quickly generated, providing unprecedented opportunities...

Double water exclusion: a hypothesis refining the O-ring theory for the hot spots at protein interfaces.

October 5, 2014 |

SUMMARY: Selenoproteins contain the 21st amino acid selenocysteine which is encoded by an inframe UGA codon, usually read as a stop. In eukaryotes, its co-translational recoding requires the presence of an RNA stem-loop structure, the SECIS element in the 3 untranslated region of (UTR) selenoprotein...

Correcting population stratification in genetic association studies using a phylogenetic approach.

October 5, 2014 |

MOTIVATION: Short sequence motifs are an important class of models in molecular biology, used most commonly for describing transcription factor binding site specificity patterns. High-throughput methods have been recently developed for detecting regulatory factor binding sites in vivo and in vitro a...

microRNA.org

October 5, 2014 |

microRNA target predictions and expression profiles ...

JOY: protein sequence-structure representation and analysis.

October 5, 2014 |

MOTIVATION: JOY is a program to annotate protein sequence alignments with three-dimensional (3D) structural features. It was developed to display 3D structural information in a sequence alignment and to help understand the conservation of amino acids in their specific local environments. RESULTS:: T...

nuScore: a web-interface for nucleosome positioning predictions.

October 5, 2014 |

Sequence-directed mapping of nucleosome positions is of major biological interest. Here, we present a web-interface for estimation of the affinity of the histone core to DNA and prediction of nucleosome arrangement on a given sequence. Our approach is based on assessment of the energy cost of impos...

Exploration of conformational transition pathways from coarse-grained simulations.

October 5, 2014 |

Analysis of population structures and genome local ancestry has become increasingly important in population and disease genetics. With the advance of next generation sequencing technologies, complete genetic variants in individuals genomes are quickly generated, providing unprecedented opportunities...

SNP mining porcine ESTs with MAVIANT, a novel tool for SNP evaluation and annotation.

October 5, 2014 |

MOTIVATION AND RESULTS: Motivated by the recent rise of interest in small regulatory RNAs, we present Locomotif--a new approach for locating RNA motifs that goes beyond the previous ones in three ways: (1) motif search is based on efficient dynamic programming algorithms, incorporating the establish...

FRANz: reconstruction of wild multi-generation pedigrees.

October 5, 2014 |

SUMMARY: We present a software package for pedigree reconstruction in natural populations using co-dominant genomic markers such as microsatellites and single nucleotide polymorphisms (SNPs). If available, the algorithm makes use of prior information such as known relationships (sub-pedigrees) or th...


Protein-protein binding affinity prediction on a diverse set of structures.

MOTIVATION: Accurate binding free energy functions for protein-protein interactions are imperative for a wide range of purposes. Their construction is predicated upon ascertaining the factors that influence binding and their relative importance. A recent benchmark of binding affinities has allowed, for the first time, the evaluation and construction of binding free energy models using a diverse set of complexes, and a systematic assessment of our ability to model the energetics of conformational changes. RESULTS: We construct a large set of molecular descriptors using commonly available tools, introducing the use of energetic factors associated with conformational changes and disorder to order transitions, as well as features calculated on structural ensembles. The descriptors are used to train and test a binding free energy model using a consensus of four machine learning algorithms, whose performance constitutes a significant improvement over the other state of the art empirical free energy functions tested. The internal workings of the learners show how the descriptors are used, illuminating the determinants of protein-protein binding. AVAILABILITY: The molecular descriptor set and descriptor values for all complexes are available in the supplementary. A web server for the learners and coordinates for the bound and unbound structures can be accessed from the website: http://bmm.cancerresearchuk.org/%7EAffinity CONTACT: paul.bates@cancer.org.uk.

Reconstructing transcription factor activities in hierarchical transcription network motifs.

MOTIVATION: A knowledge of the dynamics of transcription factors is fundamental to understand the transcriptional regulation mechanism. Nowadays an experimental measure of transcription factor activities in vivo represents a challenge. Several methods have been developed to infer these activities from easily measurable quantities such as mRNA expression of target genes. A limitation of these methods is represented by the fact that they rely on very simple single-layer structures, typically consisting of one or more transcription factors regulating a number of target genes. RESULTS: We present a novel statistical inference methodology to reverse engineer the dynamics of transcription factors in hierarchical network motifs such as feed-forward loops. The approach we present is based on a continuous time representation of the system where the high level master transcription factor is represented as a two state Markov jump process driving a system of differential equations. We solve the inference problem using an efficient variational approach and demonstrate our method on simulated data and two real datasets. The results on real data show that the predictions of our approach can capture biological behaviours in a more effective way than single-layer models of transcription, and can lead to novel biological insights. AVAILABILITY: http://homepages.inf.ed.ac.uk/gsanguin/software.html CONTACT: g.sanguinetti@ed.ac.uk.

survcomp: an R/Bioconductor package for performance assessment and comparison of survival models.

SUMMARY: The survcomp package provides functions to assess and statistically compare the performance of survival/risk prediction models. It implements state-of-the-art statistics to (i) measure the performance of risk prediction models, (ii) combine these statistical estimates from multiple datasets using a meta-analytical framework, and (iii) statistically compare the performance of competitive models. AVAILABILITY: The R/Bioconductor package survcomp is provided open source under the Artistic-2.0 License with a user manual containing installation, operating instructions and use case scenarios on real datasets. survcomp requires R version 2.13.0 or higher.URL: http://bioconductor.org/packages/release/bioc/html/survcomp.html CONTACT: Benjamin Haibe-Kains <bhaibeka@jimmy.harvard.edu>, Markus Schröder <mschroed@jimmy.harvard.edu>