Featured Websites

Ensembl Genomes

October 5, 2014 |

Integrated access to genome-scale data from non-vertebrate species ...

Mobyle: a new full web bioinformatics framework.

October 5, 2014 |

MOTIVATION: Phenotypic data collected in breeding programs and marker-trait association studies are often analyzed by means of linear mixed models. In these models, the covariance between the genetic background effects of all genotypes under study is modeled by means of pairwise coefficients of coan...

A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network.

October 5, 2014 |

SUMMARY: Genomes undergo large structural changes that alter their organization. The chromosomal regions affected by these rearrangements are called breakpoints, while those which have not been rearranged are called synteny blocks. Lemaitre et al. presented a new method to precisely delimit rearrang...

miRTarBase

October 5, 2014 |

Experimentally validated microRNA-target interactions ...

SNAPPI

October 5, 2014 |

Structures, iNterfaces and Alignments for Protein-Protein Interactions ...

Temporal logic patterns for querying dynamic models of cellular interaction networks.

October 5, 2014 |

In the Arabidopsis thaliana regulatory element analyzer (AtREA) server, we have integrated sequence data, genome-wide expression data and functional annotation data in three application modules which will be useful to identify major regulatory targets of a user-provided cis-regulatory element (CRE),...

Poisson factor models with applications to non-normalized microRNA profiling.

October 5, 2014 |

User-centred design (UCD) is a type of user interface design in which the needs and desires of users are taken into account at each stage of the design process for a service or product; often for software applications and websites. Its goal is to facilitate the design of software that is both useful...

ClusPro: an automated docking and discrimination method for the prediction of protein complexes.

October 5, 2014 |

MOTIVATION: Predicting protein interactions is one of the most challenging problems in functional genomics. Given two proteins known to interact, current docking methods evaluate billions of docked conformations by simple scoring functions, and in addition to near-native structures yield many false ...

Predicting and understanding the stability of G-quadruplexes.

October 5, 2014 |

SUMMARY: PINE-SPARKY supports the rapid, user-friendly and efficient visualization of probabilistic assignments of NMR chemical shifts to specific atoms in the covalent structure of a protein in the context of experimental NMR spectra. PINE-SPARKY is based on the very popular SPARKY package for visu...

Bluues server: electrostatic properties of wild-type and mutated protein structures.

October 5, 2014 |

We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task on Entity Relations (REL). The two main tasks represent extensions...


Protein-protein binding affinity prediction on a diverse set of structures.

MOTIVATION: Accurate binding free energy functions for protein-protein interactions are imperative for a wide range of purposes. Their construction is predicated upon ascertaining the factors that influence binding and their relative importance. A recent benchmark of binding affinities has allowed, for the first time, the evaluation and construction of binding free energy models using a diverse set of complexes, and a systematic assessment of our ability to model the energetics of conformational changes. RESULTS: We construct a large set of molecular descriptors using commonly available tools, introducing the use of energetic factors associated with conformational changes and disorder to order transitions, as well as features calculated on structural ensembles. The descriptors are used to train and test a binding free energy model using a consensus of four machine learning algorithms, whose performance constitutes a significant improvement over the other state of the art empirical free energy functions tested. The internal workings of the learners show how the descriptors are used, illuminating the determinants of protein-protein binding. AVAILABILITY: The molecular descriptor set and descriptor values for all complexes are available in the supplementary. A web server for the learners and coordinates for the bound and unbound structures can be accessed from the website: http://bmm.cancerresearchuk.org/%7EAffinity CONTACT: paul.bates@cancer.org.uk.

Reconstructing transcription factor activities in hierarchical transcription network motifs.

MOTIVATION: A knowledge of the dynamics of transcription factors is fundamental to understand the transcriptional regulation mechanism. Nowadays an experimental measure of transcription factor activities in vivo represents a challenge. Several methods have been developed to infer these activities from easily measurable quantities such as mRNA expression of target genes. A limitation of these methods is represented by the fact that they rely on very simple single-layer structures, typically consisting of one or more transcription factors regulating a number of target genes. RESULTS: We present a novel statistical inference methodology to reverse engineer the dynamics of transcription factors in hierarchical network motifs such as feed-forward loops. The approach we present is based on a continuous time representation of the system where the high level master transcription factor is represented as a two state Markov jump process driving a system of differential equations. We solve the inference problem using an efficient variational approach and demonstrate our method on simulated data and two real datasets. The results on real data show that the predictions of our approach can capture biological behaviours in a more effective way than single-layer models of transcription, and can lead to novel biological insights. AVAILABILITY: http://homepages.inf.ed.ac.uk/gsanguin/software.html CONTACT: g.sanguinetti@ed.ac.uk.

survcomp: an R/Bioconductor package for performance assessment and comparison of survival models.

SUMMARY: The survcomp package provides functions to assess and statistically compare the performance of survival/risk prediction models. It implements state-of-the-art statistics to (i) measure the performance of risk prediction models, (ii) combine these statistical estimates from multiple datasets using a meta-analytical framework, and (iii) statistically compare the performance of competitive models. AVAILABILITY: The R/Bioconductor package survcomp is provided open source under the Artistic-2.0 License with a user manual containing installation, operating instructions and use case scenarios on real datasets. survcomp requires R version 2.13.0 or higher.URL: http://bioconductor.org/packages/release/bioc/html/survcomp.html CONTACT: Benjamin Haibe-Kains <bhaibeka@jimmy.harvard.edu>, Markus Schröder <mschroed@jimmy.harvard.edu>